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Abstract—The stress field in the vicinity of a broken fiber-reinforced composite is analysed by means
of a shear-lag model. The broken filament is positioned eccentrically relative to its neighboring
fibers to simulate the commonplace non-untformity of fiber spacing within the transverse plane. it
1s shown that a fiber break gives rise to severe bending, in addition to tension, tn the neighboring
fibers-—with a4 substantial overstress focused on the nearest unbroken filament. The complex nature
of the stress ficld. which is caused by the Fulure of o fiber within a composite casts doubt on the
applicability of fatlure statistics derived from tensile failure datia of single fibers, which is commonly
used to predict the strength of composites.

1. INTRODUCTION

Concentric shear-lag models have been used extensively in the analysis of composites, in
particular, in the context of micromechanical aspects of failure [see, for example, Hull
(198 D). Indeed, the interplay between micromechanics and the statistics of fiber failure
appears to be the most difticult aspect in modeling the strength of fibrous composites.

Duce to the complexity of the phenomenon, the theoretical analyses invoke a variety
of assumptions, the influence of which may be dillicult to assess. One of the basic approaches
was set forth by Gicer and Gurland (1962) who represented a material as a series of layers.
Each layer was considered to consist of fiber-like elements loaded in parallel, which allows
for the use of the bundle theory (Daniels, 1945) to analyse its strength. The overall failure
of the layered structure may then be predicted by the weakest link approach. This theory
has left, however, the layer thickness unspecified. Rosen (1965), proposed to identify this
parameter as the so-called fiber ineffective length, 8, and provided a definttion of this
quantity.

Since then this approach, which combined micromechanical and statistical consider-
ations, has been of particular interest in failure investigations. Garg et al. (1973), provided
a good cxposition of the approach, which has remained of particular interest up to the
present time, such as in the recent investigations of composite failure by Prewo (1986) and
Schwietert and Steit (1990).

As noted carlier, the models of statistical strength are essentially approximate and
invoke various assumptions. A fortuitous agreement with experiments may, therefore, well
occur. It is instructive that a prediction of failure which is based upon the simple-minded
rule of mixtures appears to fit the experiments reported by Prewo (1986) fairly well, while
a much more sophisticated approach by Zweben and Rosen (1970) provides good results
only if the ineffective length is taken to be orders of magnitude larger than the value
derived from the theorcetical analysis. Thus, it becomes clear that there may be important
micromechanical and other factors, which were overlooked by the analysis.

To discuss these factors we recall the basic result given by Rosen (1965) as follows
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Here % and #; arce the statistical mode of composite fuilure stress and the mean tensile
strength of an individual fiber. respectivelv. & and L are the inetfective length and the
tiber length. respectively. /s a material constant which appears in the Weibull strength
distribution, and [(+) 13 the Gamma tunction. One observes. from eqn (1), that the com-
posite mechanical behavior manitests itself through the mettective length 6. while the
statistical nature of the phenomenon is introduced through the material constant, i, which
is obtained from tuailure data tor “dry™ fibers in pure tension.

There appear to be two major arguments which cast doubt on the accuracy ot egn (1)
and its underlving methodology. The first argument. forwarded by McCarthy and Orringer
{1973). indicates that statistical strength data obtained tor tensile loading of tibers involve
samples with lengths of about [ in, On the other hand. according to the analysis of Rosen
(1963), the inctfective length, o, which spectfies the layer thickness in eqn (1), s usually
between 10 and 40 microns. This brings into question the validity of the value of fi, as
obtained from fiber tenstle tests, in predicting the strength of composites.

The sccond argument deals with the absence of foad concentration etfects in eqn (1).
Zweben (1968) and Zweben and Rosen (1970), attempted to modify the theory in order to
account for these effects. While the overload suftered by the fibers adjacent to a broken
filament does tndeed play an essential role in the fatlure mechanism, the above works still
do not provide a satisfactory agreement with experiments (Prewo, 1986).

The above observations show that there may be factors which are overlooked by the
previous analyses. Among these we would particularly note the randomness of the fiber
location tn the transverse plane. Typical micrographs, for graphite BMT and graphite epoxy
composites are shown m Frgs o, b),while results of Monte-Carlo simulations are exhibited
in Figs 2(a. by [t is obvious that since fibers are not uniformly spaced within the cross-
sections, the concentrie shear-leg model does not account tor this commonplace phenom-
cenon within composites,

The ceeentric model, introduced herein, reveals essential etfects induced by the above
mentioned randommness. The present mvestication indicates that in contrast with the
premises of bundle theory, the filure of o ilament in o composite causes a complicated
stress ticld in the vicinity of the break. Spectfically, the neighboring fibers suffer extensive
bending, in addition to tension, and may theretore be subjected to fatlure mechanisms other
than those associated with pure tension. Though bending in neighboring fibers oceurs even
i concentric configurations around o broken filament, cecentricity serves o aceentualte
bending effects. [tis shown it the present paper that, with rather commonplace eecentricities,
the overload duce to bending muay be quite substantiat, with vatues of about twice those of
the intact case,

Conscequently, the present micromechanical analysis casts further doubt on the appli-
cability of the commonly used statistical data obtained for free fibers in pure tension to the
prediction of strength of fibrous composites.

2OANALYSIS

Shear-lug models, which abound in the mechanics literature, provide usctul approxi-
mations tor the mechanism of foree transter between “soft” and “hard™ material com-
ponents such as fayered structures or fiber reinforced composite materials. The formulation
of all these models derives from the common assumption that the “soft”™ material responds
only in shear, while the “hard™ matter alone carries the entire normal load.

When applied to load transfer mechanisms in untaxially reinforced polymeric com-
posites this assumption appears to provide an excellent approximation in many important
circumstances. For instance, under tension parallel to the fiber direction, the fibers carry
95-99% of the applicd load. It can also be shown that their shear distortion amounts to
no more than 3% of their normal strain.
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Fig. ITh. A typreal ¢ p Xy composite. estimated volume fraction ¢, = 65%
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=d0"%.

Fig. 2b. Monte-Carlo simulition of 4 crossasection with tiber volume fraction ¢, = 639,

Since our analysis of the ceeentric case s constructed as a perturbation from the
concentric conliguration, it 1s helplul to formulate the concentric case in a form which is
readily amenable to the perturbation scheme.

2.1 A shear-lay model for the concentric case

Consider the central fiber, £, of radius « positioned within a perfect hexagonal array
of neighboring fibers. Also, let /i denote the distance between the centers of adjacent fibers
and b the outer radius of the “shear zone™ us shown in Figs 3u,b.t

The tiber volume fraction is given by V, = 2na’/ \/'3113 whereby

h= \/'6;/‘(175&;,-—)-(1 and b=h—a= (\/2n/7(\~/57/,*)—— Da.

Let r, 0, = denote cylindrical coordinates and consider a uniaxially reinforced composite of
infinite extent which consists of a perfect, hexagonal fibrous array, subjected to uniform
axial stress o, = o, at 2] - ~.

In view of the foregoing arguments we neglect the tensile load carried by the matrix
and assume that the applied stress is carried entirely by the fibers, with ¢/ = ¢,/V, denoted
by a! = a,. This approximation is equivalent to neglecting the ratio £,,4,,/£, 1, which, for
polymeric composites, is (10 7).

Consider now the case of a single broken fiber at = = 0. The etfect of this break can
be analysed by superposition of the “undisturbed™ solution ¢! = ¢, und the solution to the
disturbance caused by ¢/(r, 0,0) = —a,(0 <r < a. 0 €0 < 2n).

In accordance with the shear lag assumption, we shall account for the ubove mentioned
“disturbance”™ by mcans of normal stress a/(r, 0. 2) in the fiber and a shear stress ©i(r. 0, 2)
in the surrounding matrix. Specifically, the solution will be based upon the following
assumptions:

(a) the only non-vanishing displacement is w. = u(r, 2):

+ Note that since (g, h)° # v, the “shear layer™ o < r < b extends bevond the representative volume clement

which is used in analyses of effective propertics. Therefore the two cylinders with radii ¢ and b should not be
confused with the concentric cylinders employed in the “three phase model™ (Christensen, 1979).
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Fig. 3. A perleet hexagonual librous array, with broken central fiber /2 surrounded by a concentric
“sleeve™ mrof matrix material in shear. (a) Cross-sectional view, (b) Side view.
(b) discard the shear deformation in the broken fiber, whereby
ul = f(2), 0<r<a, 0<z<x (2)
and
ol =L [(z): (3)

(¢) discurd the contribution of normal stresses to the response of the matrix. Conse-
quently, in the region ¢ < r < b consider only the shear strain 3t = Ju?/Cr, shear

Irz
stress 7 = G, v as well as equilibrium governed by
AL S 44!
.-+ = =0. 4
or r

The ostensible inconsistency of having t/.(a) # t72(a) can be explained by the
same rationale employed in the Bernoulli-Euler beam theory, namely, the shear
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stresses that act upon the broken fiber can be determined as a reaction, rather than
from constitutive relations;
(d) the displacement «" vanishes at r = 4.

In addition. the shear-lag model enables the satisfaction of the displacement continuity
condition at r = ¢ and “global”™ equilibrium for the broken fiber.

In view of the foregoing assumptions we construct the solution to the present problem
as follows:

By the hypothesis «! = f(z). consequently consider 7 = f(2)g(r) (a<r<b,
0<-< x).

From the equilibrium condition (4) we get g"+g¢'/r = 0, hence g(r) = A+ Binr. The
conditions «7(z.a) = w/(z.a) and (2. b) = 0 yield

In(b/r)
" In (h/a)

{

S ()

Finally. force equilibrium in the z-direction for the fiber gives

f

L, da!
na’ d- - - 2ratli(a, sy =0 (6)

which, upon employment of eqns (3) and (5), gives

k*
S @)= ) =0 ™)
where
kY= __Z“E’L‘__
L In (bja)”
Finally, the boundary conditions ¢! = —a,at 2 = 0 and o/ = 0 as z — o yield
_({ a —I((:{ul 8
Ji) = E k (8)
and g/ = —g, e 59

By superposition, the total stress on the broken fiber is

0,!( total)

= 0’0[1 _e-k(:,’u)]. (9)
A major shortcoming of all shear-lag models is their omission of transverse effects, such as
the radial displucement u,, which may give rise to substantial transverse stresses (e.g. ,)
especially in the vicinity of the fiber break. However, since the main purpose of the present
work is to accentuate the effects of fiber eccentricity, we do not attempt to correct the
inherent deticiency of shear-lag models. [nstead, we choose to illustrate our point by a
consistent use of the above model, taking advantage of its relative simplicity.

2.2. Eccentric shear lay

It is conjectured that a reasonable estimate of the effects of random fiber spacings,
exhibited in Figs | and 2, can be obtained by analysing the idealized circumstance of a
perfect hexagonal array containing an eccentric central fiber f which is shifted to the right
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Fig. 4. A hexagonal fibrous array as in Fig. 3. with broken eccentric fiber /) eccentricity ¢ and
nearest acighboring fiber £,

by a distance ¢ toward the nearest neighboring fiber F, as shown in Fig. 4. (The circle drawn
in dashed lines shows the concentric position of that fiber.)

Consider now a cylindrical coordinate system r, (), z centered at point O, instead of O,
but retain the boundary conditions «7 = 0 at r = b on a cylindrical boundary which is
centered about O. This cecentric boundary value problem can be solved by means of a
perturbation scheme which employs 4 = e/b as a perturbation parameter. Such schemes
were discussed by Van Dyke (1964} for cases which apply in flutd mechanics and modified
by Parnes and Beltzer (1986) to circumstances appropriite for solids. In those schemes the
perturbations oceur in the shapes of the bounduarics but notin the governing ficld equations,
which remain lincur.

In our computations we shall consider the circumstance of maximum eccentricity within
the idealized configuration shown in Fig. 4 (when e = b—a, 4 = (b—a)/b). accounting for
the effects of the commonplace randomness of the arrays shown in Figs | and 2.

Obviously, when the inner fiber breaks at 2 = 0 the eccentricity will give rise to non-
uniform shear stresses o around the fiber -matrix interfuce. These stresses may vary not
only along the z-direction, but also with the angle 0, and they attain their highest values at
the place of nearest approach. Consequently, that fiber will be subject to bending moments
and undergo rotations in addition to normal deformation.

In line with assumptions (a)-(d) of the previous section we now consider

wl(r, 0.2y = (DY +nf{zircost) (0€r<a,0<€0<2n,0<2< ) {10)

Equation (10) implies that fiber deformation satisfies the hypothesis that “planes remain
planes™.

Within the matrix region ¢ € r € 5 the displacement «7 and the shear stress t0% depend
on #, and egn (4) must be replaced by

T2 SO S B3
R =0 (1

ar r r ¢t

with

aul

" . 1 fu?
=G,
aor

and =G, .. (12)
r ¢t

rs

Let «7(r. 0. 2) = g{=)p(r. ) then employment of (11} and (12) yields
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(_a:_+ia+1 a-)wzo

o rer £ o0°)

whereby

U = p(2) {A+81nr+ }E (A" + B,r~") cos mﬂ} (13

mm |

where even symmetry in 8 was considered without loss of generality.

Expressions (10) and (13) are readily amenable to a solution by the perturbation
method of Parnes and Beltzer (1986), employing the eccentricity n as the perturbation
parameter. Although this method can be carried to any desired degree of accuracy by
expanding to ever higher powers of n, we deliberately refrain from going beyond the first
power in n in deriving our estimate for the effects of fiber eccentricity. We eschew the
employment of higher order expansions because the idealization involved in selecting the
configuration shown in Fig. 4 to represent the behavior of random arrays, such as shown
in Figs | and 2, leads us to believe that higher order mathematical accuracy may, in fact,
be devoid of physical content. Nevertheless, an expansion to 0(n’) is given in the Appendix
to demonstrate the applicability of the perturbation technique.

Employment of the expression (10) and the form given in eqn (13), together with the
requirement that u/{a, 0, 2) = «(a, 8, 2) and the assumption uw7(b,0,2) = 0, in accordance
with details given in the Appendix, yields

- 2}, _ M b!
W (r.0,z) = lnf((h/)&) [ln (b/r)+n [{bz/{:’f):cos ()] +r1/i(:)5;%3 (-«; -—r) cos 0,

a<r<h 0<£0<2n (14)

The normat stress in the fiber and the shear stress in the matrix are given by

ol = E[f'@)+nf'(z)rcos ], 0<r<a (15)
and
[ 11 | +a?/r? ] a’ ( bl) }
= - g ) e = , asrxbh
L G. {in(b{a) r+nb g cos 8 | +np( )bl-a* 1+ o cosfp, as<r<bh
(16)
Force equilibrium for the fiber in the z-direction reads
w "I 80'{ 2%
J. J —rdrdf+ a,0,2)add =0 (17
o Jo 02 o
while the moment equilibrium of the fiber about the y-axis (0 = +(n/2)) gives
4 [ aLf * )
J' J ~=r cos{}drd9+j (a0, 2)a’ cos 0 dd = 0. (18
o Jo ©2 o

Upon substitution of eqns (15) and (16) in expressions (17) and (18) we obtain the following
field equations for f{z) and f(=):
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k- ., 2G.,
) - = f(2)=0. k%= —r— 9
/) a'f() 0 E ln(b ) )
and
y [2 nl
B)—=B)—=f(0)=0 (20)
a a
where
4G, a*+b* ., 8G, b

= ? =

E b —d " —ET (b*—a’)In (b/a)’

Note that eqn (19) is identical with the concentric result given in eqn (7). When higher
order expansions in n are employed this is no longer the case and the field equations for
/(z) and B(z) are fully coupled. The uncoupling in eqn (19) occurs because the lowest order
correction to u! is 0 (n°).

For an extended medium and a semi-infinitely long broken fiber, 0 < = < 20, we have
f(2) = A¢ " and the boundary condition at z = 0

J- J ol(r.0,0)rdrd0 = —na’o,
0 1]

which, together with expression (15) gives A = (a,/E,)(a/k) whereby

. Gy d ki o) )
)= : 21
/(=) £k (2h

as in eyn (8).
Since the disturbance introduced by fiber breakage involves no applied moment at
2 =0, we have

f J‘ al(r,0,0)r* cos 0 drdt) =0
( 0

)
whereby, in view of eqn (15), we obtain the boundary condition
f(0) = 0. (22)

Substituting (21) into (20), together with the condition (22) and the requirement that
lim fi(z) = 0 we obtain after several manipulations:

n’ o,la . a i
() = oy o] —@ KEO T Hra | 23
By = oy E,[kc € :! (23)

For realistic values of ¢, (0.4 < ¢, < 0.7) & and [ are of similar magnitude.

With f(z) and fi(z) thus determined, eqns (10), (14)~(16), provide the “complete”™
solution to the perturbed ficld caused by the break of the inner fiber. The total field is given
by adding 6/ = o, to expression (15).

We are now in a position to assess the overioad caused in the nearest neighboring fiber,
centered at r = A, 0 = 0.

In contrast with the concentric case, when the overload caused by a fiber break is
shared equally by all six neighboring fibers, we assume that in the eccentric case the burden
is distributed proportionately to the six unequal angles subtended by the arcs which span
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Fig. 5. Geometric considerations for evaluating the overload carried by the nearest neighboring
fiber F due to the fracture of the fiber /. The load shed upon £ is related to the angle x (see text).

the ¢ccentric boundary relative to 0. Specifically, the angle a subtended by the nearest
neighboring fiber Fis shown in Fig. 5. A straightforward calculation gives x = /1242,
where tana’ = d/’(\/fia) = (h)2 -—a)/(\/3a). Assuming that the overload N(z) on fiber Fis
duc to the shear stress 12(b, 2, 0), —a < 0 < a, we have

NG = j ' J. (b, 0. )b d0 d=. (24)

Substitution of egns (16), (21) and (23) into expression (24) yields, after several
manipulations

. ’ . bZ 2 8 2h2 i
N(z) = g,a° {oz e M9 sin g [( +a 4 s In (b/a))e-n:m
-

bi-a® (7)2 —a?)
4a’h?
+ "—i.f.l.,_.;‘? e -I(quli]} . (25)

In 25) ¢* = 2(a* +bY)In(b/a)— (b*~a’).

In addition to the normal overload, the shear stresses which act at the interface between
the matrix and the nearest neighboring fiber introduce bending into that fiber. To assess
the bending effect assume that these shear stresses are distributed uniformly over the arc PP’
shown in Fig. 5. This would place the line of action of N{(=) at the center of gravity of the
arc PP’, hence with a lever arm p = 3\/§a/2n about the center of the nearest neighboring
fiber.

Combining the normal and bending effects we have an overstress on the nearest
neighbor

min na”

a,,,.,(:;:ﬂf,l(;ﬂé’):ﬁf:‘}(li‘i\ﬁ). (26)
i na’ a r

Consider the corresponding non-dimensional quantity S(Dmax = Oman(2)/0¢ then,

employing superposition in analogy with eqn (9). the total non-dimensional stress in the
fiber F is given by S(2) = S(2)+ 1 with S(2}am.. occurring at point Pr and S{(Z)ma at Py
(Fig. 5).
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3 RESULTS AND CONCLUDING REMARKS
The non-dimensional stresses S(2),,. borne by the fiber which 1s nearest to the broken
filament are shown in Figs 6 and 7 vs the non-dimensional distance = « from the place of
the fiber break. for E-glass epoxy and graphite epoxy. respectively. For E-glass epoxy we
took b, =0.50. £, = 10.5x10° psi and G, = 0.2x 10° psi. while for graphite'epoxy we
employed ¥, = 0.63, £, = 45 x 10" psiand G,, = 0.2 x [0° psi.

2.5
- T~
/, \\ P
|
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. \
204" ‘\@,’/
139 .. 8(Pc;2/a)
3
~ 4 -
~ N -
a TTeeeellll
» 1.0 ________:-_:L'_‘_'.‘_‘:'_'.::u
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-
e
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0.0 M Y M Y v 1 v T
0 3 8 9 12 15

z/a

Fig. 6. The dimensionless stresses S(2) carnied by the tiber £ at points £ and £, vs the non-
dimensional distunce = w0, Case of glass epoxy, with 1, = 50%.
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fe. 7. Same as Frg. 60 but for the case of graphite cpoxy and 1, = 63%.
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Note that a maximal stress increase of about 100% occurs in both glass epoxy and
graphite ‘epoxy. This contrasts with rises of about 10~15% evaluated by Hedgepeth (1961).
Furthermore. the effect of a fiber break is confined to a smaller distance in glass epoxy than
in graphite ‘epoxy since the higher modulus of the graphite fibers introduces a stronger
stress channelling effect due to the magnified anisotropy of the composite.

An account of the effects of overload on fibers near the broken filament was incor-
porated by Zweben and Rosen (1970), where all overloads were considered to be purely
tensile and all fiber arrays were assumed to be periodic. They noted that fibers adjacent to
the broken one would fail at the stress .- K. where g, is the nominal failure stress and K
denotes the overload factor. Since fibers within composites are known to break even under
low load levels the consideration of overload effects appears to be realistic. This argument
applies in the present work as well, with the additional proposition that stresses due to fiber
bending should be incorporated in the statistical analysis. Furthermore. it should be noted
that due to the randomness of fiber spacing within the transverse cross-section the factor
K should be viewed as a random variable and the statistical analysis should be reformulated
to account for this fact. Finally, as indicated in the paragraph following eqn (9). normal
stresses exist in the matrix (and fibers) in the transverse direction in the vicinity of a fiber
break. A method to determine these stresses was developed, within the context of shear lag
models, by Goree and co-workers [see e.g.. Dharani er al. (1983)]. Obviously. such stresses
would cause bending in neighboring fibers even in perfect arrays.

In view of the above considerations. it is clear that failure mechanisms quite distinct
from tensile fracture can occur in fibers adjacent to a broken filament. Since it is reasonable
to assume that imperfections of several kinds (such as weak, kinked, misaligned and broken
fibers, debonds along fiberymatrix interfaces, voids and cracks within the matrix, etc.) are
commonplace within fibrous composites, it is to be expected that the complex state of
stress presented in this work should be routinely encountered in the vicinities of those
imperfections. Consequently, the failure of filimentary composites may well be attributed
to complex, mixed-mode mechanisms which are inherently different from those represented
by the strength statistics of “dry™ fiber bundles, which is assoctated with purely tensile
response.
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APPENDIX: THE PERTURBATION EXPANSION

Consider two eccentric circles of radii g and b, respectively and with eccentricity e as shown in Fig. 4.
As indicated in egns (2) and (5). the solution to the concentne shear-lag problem is given by

u! = ul(z) = fl2) (AD)
= () _]n(h r) e A%
S Tlathay’ A=
where according toegn 8
.} e (E‘w‘ ki u) 5 L2 26}:"_» Al
) E,ke with & -E‘—w,ln(b:a)' (A3)

In the eccentric case, considerations of static equilibrium for the fiber lead to the incorporation of a bending
component in its deformation. Upon assuming that undeformed cross-sectional plunes of the fiber remain plane
after deformation, we choose in accordance with egn (10):

ul = ul(r.0.2) = [(2)+nf(rcos (A$)
where 7 = ¢/b. In the sequel, 1 serves as our perturbation parameter.t

In addition, by egns {10)-{12), equilibrium of the matrix region yiclds

2O il S (s B cos mo [ AS
' 'l'ﬁib?&i"[('H Z' ur” + 7 Jeos mt) | p(z). {AS)

e

Itis now necessiry to satisfy the conditions that o7 = u/ at r = g and that &7 = 0 on the boundary of the eccentric
circle of radius r = b,

According to the perturbation scheme of Parnes and Beltzer {1986) the value of a function F{r, 1) on the
boundary C, of an eccentric circle of radius b with cccentricity 5 = ¢/b can be expressed by a perturbation
cxpanston i g as follows

FIC, = FO[FO 4 0O+ [F 4+ 00 4,00 g+ 1R 4,000 4,00 + 0+ - (A6)

where, in the present case

h . .,
oPY = ~beosOFY, GOV = ([heosT BF —sinf 0 F ] and
IS b
SV = , cosl sin® 0 £~ qus' oF . (A7)

In the present problem the function ™ is given in eqn (A4), and the boundary condition at u7/Cy = 0 is
satistied by the employment of expressions (A6) and (A7), On the other hand the continuity condition o7 = 1/ at
r = a does ot involve the perturbation scheme since, by hypothesis. 7 = a is a “concentric boundary™. Obviously,
the presence of two functions of z, /(z) and (). in eqn (Ad) will necessitate two series expansions in (AS) (to
assure 1 = a4 at r = «). Denote the two series expansions by

: B . B
[ Z (,4,,,/- + 7’) cos m()] /() and [ ¥ (J,,,r”’ + /—"') cos rn{):| B(z), respectively.d (A8)
1

e~ m=l

Then, a systematic application of the conditions «7/C, = 0 and «{a. ), 2} = ¥/(a. 0. 1) yields

In (h/r} B, 0o ., B,
0.2y = =gl e+ o JeosO+nt Cyln(rfay+{ Ayt + -3 beos 20
In (h/a) r r-

’) 2 r_ 2
+ry‘[(€\r+ {*-') cus()+(‘-l NaEs Q})cos 3(JJ}]‘(:)+{ *—.»‘i—-.-b ! cos )
r r b —a r
R ) . B, . b, R
+1} Ry ln (rie) + J,r'-{-; cos20 L +n' i1 Cird = cost+| A’ + =5 Jcos 30 | B3+ 0(n'), (AD)
r

where, upon denoting

T At first glance it may appear that the representation {Ad) is somewhat arbitrary. However, it can be shown
that if one starts with 2/(2) = f{z)+ f{z)rcos ) then a systematic expansion in n indeed yields f(2) = nfi(z). We
chose (A4) as our starting expression to circumvent non-essential details,

$ 1t is of course always permissible to include the “concentric™ solution 4 + Blnr within the perturbation
expansion whenever necessary.
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log (b/a) bt —a b —a
¢ b 1+ t +b‘+a‘ i _ a's’ | 1 +b‘+a‘ i
TR LS og (hva) b —a*]" 7' b =4t * log (bja) ~ b*—a* ]
[ A ath* b'+at

PR el Sy

fIl = —-m&b‘v:u

The equilibrium of force and moment on the fiber, as given in equations {(17) and (I8}, yield two coupled
ordinary differential cquations for f(2) and $(2). It turns out that f12) and B(2) now take the following forms:

f(z) = (2': : +ayn? +u.q‘) L O R T
BEY = (Bon+ B+ B’y Gty 4y e b (A10)
with
K=ksnk, +nk,+n'k,, T=il+ql, +0°, 40,
As noted earlier, we refrain from employing the higher order results of this Appendix in our computations
because the approximations involved in our model do not warrant their use. In fact, the utilization of higher

expansions nnay convey the fallscious impression of higher accuracy.



