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"\bstract-The stress field in the vicinity of a broken fiber-reinf(ltccd l'ompositv' is analysv'd by ml'ans
of a shear-lag model. The hroken filament is positioned eccentrically relative to its neighhoring
lihers to simulate the comnlllnplace non-uniformity of fiber spacing within the transverse plane. It
is shpwn that a fihcr hreak gives rise to severe hending. in additilln to tension. in the neighboring
Iihers·-with a suhst.mtial overstress fOl"lISed pn the nearest unhn'ken filament. The comp\c.\ nature
of the stress field. which is causv'd hy the failure llf a Iiher Within a cl1mposite casts douht on the
applicahility of failure stalisllcs derived from tensile failure data of single tihers. which is clll1lmonly
used to predict the strength of'llmp"sit,s.

I. INTRODUCTlO;\j

COIlL'entriv: shear-lag models have oeen used extensively in the analysis of cl1mposites, in
particular, in the conll:xt of micromechanical aspects of failure [see, for example. Hull
(I <JH I l]. Indeed. the interplay oetween mil:romev:hanil:s and the statistil:s of fiber failure
appears to be the most dillil:ult aspel:t in modeling the strength of fibrous wmposites.

Due to the l:omplexity of the phenomenon. the thenretil:al analyses invoke a variety
ofassumptions, the inf1uelll:e ofwhidl may be dillieult to assess. One of the basic approaches
was set forth by GUl:er and Gurland (1962) who represented a material as a series of layers.
Eal:h layer was wnsidered to wnsist of fiber-like dements loaded in paralld. which allows
for the use of the bundle theory (Danids, 1(45) to analyse its strength. The overall failure
of the layered structure may then be predicted by the weakest link approadl. This theory
has left. however, the layer thil:kness unspel:ilied. Rosen (1965). proposed to identify this
parameter as the so-called fiber inefli.:ctive length, (i, and provided a ddinition of this
quantity.

Since then this approach, whil:h l:ombined micromechanical and statistical consider­
ations. has been of particular interest in failure investigations. Garg ('{ al. (1973). provided
a good exposition of the approal:h, which has remained of particular interest up to the
present time, such as in the recent investigations of composite failure by Prewo (1986) and
Schwietert and Steil' (1990).

As noted earlier, the modds of statistical strength arc essentially approximate and
invoke various assumptions. A fortuitous agreement with experiments may, therefore, wdl
occur. It is instrul:tive that a prediction of failure whil:h is based upon the simple-minded
rule of mixtures appears to lit the experiments reported by Prewo (1986) fairly well, while
a much more sophisticated approach by Zweben and Rosen (1970) provides good results
only if the inelTective length is taken to be orders of magnitude larger than the value
derived from the theoretical analysis. Thus, it becomes clear that there may be important
micromechanical and other factors. which were overlooked by the analysis.

To discuss these factors we recall the basic result given by Rosen (1965) as follows
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f-kn.: ,,* and "f ~lre: the: 'tclli'tIL~i1 nhld~ l\f LumpllSl1~ failur~ str~ss and th~ f1l~an t~nslk

str~nt:th lli' an IndiVidual lib<.:r. r~,p<.:LtII<.:I:. ,i and L arL' th<.: If1dkctiv~ knt:th and th~

tiba knt:th. n:sp<.:LtI\<.:I:. Ii h a mat<.:nal Cllf1'tant \\hich app~ars In th~ WeibulI strength
distrihutll)n. and f(·) is the Gamma funLtiun. On<.: obs~n~s. frum eqn (I), that th~ com­
poslt<.: m<.:chanlcal h\:havinr manift.:sts itst.:lf through the indrectlv~ knt:th ll, while the
stalisticalnclturt.: uf tht.: pht.:[wmt.:[wn h intrl1duced through tht.: material constant. II. which
is obtaint.:d frl\m fail un.: data fill' "dry" tihcrs In purt.: tensilHl.

Th<.:rt.: aprt.:~lr tu h<.: tllll major argumt.:nts which cast dDUbt on th~ accuracy of ~qn (I)
and Its ullllerlying m<.:thDdl1logy. Th<.: first ~Irgumcnt. fllrward~d by McCarthy and Orringer
(1975 l. indlcatcs that staliqical strcngth dat~1 Dbt~lIn<.:d fl1r t<.:nsile loading of tibers if1\'olve
sampks with kngths llf ahDut I in. On tht.: oth<.:r hand, according to the analysis of Rosen
(1%5). th<.: indft.:ctiv<.: knt:th, ,l, I\hich spel·ifit.:s thc layt.:r thicknt.:ss in eqn (I), is usually
b<.:tw<.:t.:n 10 and ..H) micrllils. This brings intD question the validity of the value of II. as
Dbtallled from fibu tcnsilc tcsts, In rredicting th~ str<.:ngth of comrosites,

The st.:cllnd argulllent deals with the ~Ihsence of load concentration effects in eqn (I),

Zwehcn (!lJ6X) and Zwchcn alld RDst.:n (I 1!70), attempted to modify the theory in order to
aCCDunt for these effects. \VllIk the overload sulkred hy the lihus adjacent to a hroken
lilall1\:nt docs illd<.:cd play all essellti~J! role III th<.: failure mechallism, the ahove works still
do nl)t provide a sa lisLILtory at:r<.:<.:Il1<.:1l t \Ii Ih <.:\ peri m<.:nts (Prewo, II)Xh).

The ~lhove ohsen~lli(\lls SI1(1\V lh;lt therl' may h<.: factDrs "hlLh ;11'<': DVCrlDDkt:d hy tht.:
prt:\II\lIS analysl's. Alllllflg th<.:,t: IIC wOLild p;lrticularly nlltc tht: randoll1nt:ss of lht: fihu
10GIli01l In lht: lransvers<.: p!;lnt:. TYl'i";J! Illlcrogr;ll'hs, for gr~lplllt<.: BM I and grarhitt:, t:roxY
COIllI'0SlIt:s ~Ir( showll ill "ig' I(~L h), willie I'(sulh of \lolltL'-C~lrlosimulatiDns art: exhihitt:d
in hgs 2(a, hl, II is ohviou' tlut '1IlCt.: tiht.:r, art: IlDI uniformly sran:d within the cross­
st.:clioIlS, tht: cOllct:lllnc ,hc;lr-!;lg Illod(1 dllc, not accounl for this COIl1IllDnrIaC( phenDm­
(nOll wllllill CllIllI'O,ill".

Tilt: t:cc~nlric 1l1lld~1. Illlrodllcnl 1I<.:I·el 11 , reve;J!s essenllal etkcts induced by lhe above
Illenlillll<.:d randollliless. '1 hL' I're,ellt illle'ligatioll IndiC;lle, Ih~lt in contrast with the
pr<':lllise' of hUlldk lhe\)ry, lhe Llilure llf ~I tilamenl ill ~I cllmpllsit<.: ~aust:s a complicated
stress ti<.:ld in lh<.: vi~illity of th<.: hre~lk. SpeL.'Ilically, th<.: 11I.:ighhoring fihas sulll:r e\lL:nsivt:
h<.:nding, in ~Iddili,'n to lL:lhlOIl, and Illay lher<.:for<.: h<.: suhj<':L.'lL:d 10 Llilure Illt.:chanisllls other
lh~ln llws<.: ~IS'll~I~lled wilh purL.' l<:nsion. Though h(nding in n<.:ighhoring fihers oCL:urs <.:ven
in concentric L.'ontigur~lllons ;Iround ~I hrok<':1l lildlll<.:nl. L:L.'L:t:nlriL.'ity scrv<.:s tD aCL.'enluate
hcndillg(lfeL'ts. Il is shown inlhe pres<.:nt P~IP<.:r th~ll. wilh rath<.:rL.'ollllllollrLtcr:ecct:ntricilies,
th~ uverll)~ld due tu h<.:ndllig Ill~IY h<.: qUllc suh,I~IIlII;rI. \vilh \~rlu<.:s uf ~lhout IwiL:<.: thuse Df
th<.: int~IL.'1 c;he,

Clllh<.:quelltly, thc pr<.:,<.:nt Illlcrolll<.:chdnic;rI ;ll1al:Sls casts furthr:r duubt on the aprli­
c;lhilit: Df the L.'ulllnwnly lls<.:d slatistiL:~rllLtta ohtained for frr:r: lihers in rurt.: lL:nsion to th<.:
rrr:diL.'tiun Df strength uf tihrllus L.'ull1pusites,

\ ".\ I. 'iSIS

Sht:ar-Ltg Illodels, whid] ~Ibuund In lhe Illechdnics literatllr<.:, rrovide useful approxl­
Illations for the Illedlanislll of forc<.: lrdnst'<.:r betwr:<.:n '"soft" dnd ""hard'" material com­
pont:nts SUL.'h as Iayr:rt:d structures or fiher rt:inforced compositr: malL:rials, The formulation
or alllht:se models derivt:s from the common dssumrtion that the "sort'" material responds
only in shear, while th<.: "h~lrd'" malter alone L:arrir:s the entire normal load,

When arplied to load transfer meL.'hanisms In uniaxially reinforced polymt:ric com­
posites this assumption arrears to rrovidt: an excellent approximation in many important
circumslanc<.:s. For instan<.:r:, ul1lkr tt.:nsion raralkl to thr: fiha direction, the tibers carry
95-99% of the aprlit:d load. It can also be shown thdt tht:ir shear distortion amounts to
no mort.: than 5°;, of their nDrm~rI strain.
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Eccentric shear-lag modd

Since our analysis of the eccentric case is constructed as a perturhation from the
concentric configuratioll. it is helpful to formulate the concentric case in a fortll which is
readily amenahle to the perturhation scheme.

2.1. A sltc£lr-I£I.I1/1/odcl jilr /lte cOlln'lI/ric ClIS/,

Consider the central liber.;: of radius II positioned within a perfect hexagonal array
of neighboring fibers. Also. let It denote the distance between the centers of adjacent fibers
and h the outer radius of the "shear zone" as shown in Figs 3a, b.t

The tiber volume fraction is given by V, = 21!£I~i \,/31t~ whereby

Let r, 0, : denote cylindrical coordinates and consider a uniaxially reinforced composite of
infinite extent which consists of a perfect. hexagonal fibrous array. subjected to uniform
axial stress (J: = (J4 at 1:1 ..... 'l..

In view of the foregoing arguments we neglect the tensile load carried by the matrix
and assume that the applied stress is carried entirely by the fibers, with (J; = IT",' VI denoted
by (J; = (Jo. This approximation is equivalent to neglecting the ratio E",V",/ E, 1'/ which. for
polymeric composites, is O( 10 1).

Consider now the case of a single broken tiba at : = O. The drect of this break can
be analysed by superposition of the "undisturbed" solution a; = all and the solution to the
disturbance caused by IT;(r./J.O) = -all (0 ~ r ~ £I. 0 ~ /J < 2n:).

In accordance with the shear lag assumption, we shall account for the above mentioned
"disturbance" by means of normal stress a;(r, 0,:) in the liber and a shear stress r;~(r, 0.:)
in the surrounding matrix. Specifically. the solution will be based upon the following
assumptions:

(a) the only non-vanishing displacement is 1/: = I/:(r.:):

t Note that since ltl, f,)' #- I', the "shear layer"' 1I < r < h e'tends hc.\'",/(/the representative volume clement
which is used in an;lIyses of elTcctive properties, Therefore the two cylinders with radii 1I and h should not be
confused with the concentric cylinders employed in the "three phase model" (Christensen. 1'17'1),
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Fig. J. A perk<.:! hexagonCl\ librullS array. with brokcn cClllrallibcr r surrounded by a wn<.:cnlfi<.:
"skcw" 11/ of matri.\ material in shcar. (a) Cros.'Heetiunal vicw. (b) Sidc vicw.

(b) discard tht: sht:ar dt:formation in tht: brokt:n fibt:r. wht:rt:by

11; = f(::), 0 ~ r < iI. 0 ~ :: < x,

and

a; = EJ'(:.);

(2)

(3)

(c) discard tht: contribution of normal strt:sst:s to tht: rt:sponst: of tht: matrix. Conse­
quently. in the region iI < r < h consider only tht: shear strain y~~ = cJu~'/2r, shear
stress r;'; = Gml';~ as well as equilibrium gowrnt:d by

(4)

Tht: ostensibk inconsistency of having r:,(a) # r~~(a) can be explained by the
same rationale employed in the Bernoulli-Eukr beam theory, namely, the shear
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stresses that act upon the broken fiber can be determined as a reaction, rather than
from constitutive relations:

(d) the displacement It;' vanishes at r b.

In addition. the shear-lag model enables the satisfaction of the displacement continuity
condition at r = a and "global" equilibrium for the broken fiber.

In view of the foregoing assumptions we construct the solution to the present problem
as follows:

By the hypothesis II; = /(:). consequently consider It;' = I(:)g(r) (a ~ r ~ b,
o~:: < x).

From the equilibrium condition (~) we get g"+g'lr = 0, hence g(r) = A+Blnr. The
conditions 1('(:. a) = u;(:. a) and u';'(::, b) = 0 yield

In (blr)
It;' = I-hi1(:)·n ( a)

Finally. force equilibrium in the :-direction for the fiber gives

, da:
;r(r d:::' +2;rar;;(a, =) = 0

which. upon employment of eqns (3) amI (5), gives

k!
f"(=)-, /(::) = 0

,I"

where

, 2G",k- =_.._-_._--
E~ In (hia)'

Finally, the boundary conditions a~ = -at) at:: = O.llld a{ = 0 as:: -+ co yield

and a~ = -ao e kl: "I.

By superposition. the total stress on the broken fiber is

(5)

(6)

(7)

(8)

(9)

A major shortcoming of all shear-lag models is their omission of transverse effects, such as
the radial displacement II" which may give rise to substantial transverse stresses (e.g. a,)
especially in the vicinity of the liber break. However, since the main purpose of the present
work is to accentuate the clTects of fiber eccentricity, we do not attempt to correct the
inherent dcliciency of shear-lag models. Instead, we choose to il1ustrate our point by a
consistent use of the above model, taking advantage of its relative simplicity.

2.2. Ecccmric shear lag
It is conjectured that a reasonable estimate of the effects of random fiber spacings,

exhibited in Figs 1 and 2, can be obtained by analysing the idealized circumstance of a
perfect hexagonal array containing an eccentric central fiber 1 which is shifted to the right
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Fig. 4. A h.:.,agl>nal fibrous array as in Fig. 3. with brok.:n eccentric filxr /: eccentricity I! and
nearest n.:ighboring tiber F.

by a distance t! toward the nearest neighboring fiber F. as shown in Fig. 4. (The circle drawn
in dashed lines shows the I.:oncentric position of that fiber.)

Consider now a qlindricall.:oonlinate system r. O. :: centered at point O. instead of O.
but retain the boundary nHlditions u~' = () at r = II on a cylindrical boundary which is
I.:entered about O. This en:entric boundary value problem can be solved by means of a
perturbation scheme whil.:h employs 1/ = ('III as a perturbation parameter. Such sl.:hemes
were discussed by Van Dyke (1964) for cases which apply in !luid mechanics and modified
by Parnes and Bcluer (191\6) to circumstances appropriate for solids. In those schemes the
perturbations occur in the shapes of the boundaries but not in the governing field equations.
which remain linear.

In our I.:omputations we shalll.:onsider the cirl.:urnstanl.:e of maximum el.:centricity within
the idealized configuration shown in Fig. 4 (whcn t' = h-a. II (II-a)!h). accounting for
the effects of the commonplace randomness of the arrays shown in Figs I and 2.

Obviollsly. when the inner fiba breaks at :: = 0 the eccentricity will give rise to non­
uniform shear stresses r;~ around the fiber -matrix interfal.:e. These stresses may vary not
only along the ::·direction. but also with the angle O. and they attain their highest values at
the place of nearest approach. Consequently, that tiber will be subject to bending moments
and undt:rgo rotations in addition to normal deformation.

In line with assumptions (a}-(d) of the previous section we now consider

u{(r, 0.::) = /(::)+"IJ(::)rcos (} (0 ~ r ~ a.O ~ 0 < 117,0 ~:: ~ :0). (10)

Equation (10) implies that tiber deformation satisfies the hypothesis that "planes remain
planes".

Within the matrix region a ~ r ~ h the displacement II'; and the shear stress r;; depend
on 0, and eqn (4) must be replaced by

{:t"~'; r/11 I .... ",
"

(11:0 :

ar + + to =0 (I I)
r r

with

(11(' I ?u~'
rm Gm and "(" G"t ( 12)= 0: =': Dr ;;0r

Let I('(r. 0.::) == q(::)p(r.O) then employment of (II) and (12) yields
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ti; =P(:){A+Blnr+ t (A",r"'+B",r-"')Cosmo}
"'.1
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(13)

where even symmetry in 0 was considered without loss of generality.
Expressions (10) and (13) are readily amenable to a solution by the perturbation

method of Parnes and Beltzer (1986). employing the eccentricity '1 as the perturbation
parameter. Although this method can be carried to any desired degree of accuracy by
expanding to ever higher powers of fl. we deliberately refrain from going beyond the first
power in " in deriving our estimate for the effects of fiber eccentricity. We eschew the
employment of higher order expansions because the idealization involved in selecting the
configuration shown in Fig. 4 to represent the behavior of random arrays. such as shown
in Figs I and 2. leads us to believe that higher order mathematical accuracy may. in fact.
be devoid of physical content. Nevertheless. an expansion to 0(,,3) is given in the Appendix
to demonstrate the applicability of the perturbation technique.

Employment of the expression (10) and the form given in eqn (13). together with the
requirement that u[(a. 0.:) = 1t;'(a. 0.:) and the assumption ti;(b. 0.:) = O. in accordance
with details given in the Appendix. yields

f(::) [ a
2
hlr-hr ] a

2
(b

2
)It;'(r. 0.::) = In (hlr) + '1 .,. ,- - .. - cos 0 + "f/(:) ",--, -- - r cos O.

In (hla) b'-a2 b'-a'r

a ~ r ~ h. 0 ~ 0 < 2n.

The normal stress in the fiber and the shear stress in the matrix are given by

a{ = EJU"'(:)+1/{J'(z)rcosO]. 0 ~ r ~ a

and

( 14)

(15)

a ~ r ~ h.

(16)

Force equilibrium for the fiber in the :-direction reads

[" [20 va! [20

Jo Jo 0:- rdr dO+ Jo r:;(a. O. :)a dO = 0

while the moment equilibrium of the fiber about the y-axis (0 = ± (n/2» gives

i"120 O(Jf i20

';-;: r 2 cos 0 dr dO+ r:;(o. O. Z)02 cos 0 dO = o.
o 0 v. 0

(17)

(18)

Upon substitution ofeqns (15) and (16) in expressions (17) and (18) we obtain the following
field equations for f{=) and (J(=):



and

where
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k: • 2C~
l"(::)- -;- f(::) = O. k- = -_._...

a- £(In(ha)
( 19)

(20)

• 8Cm b
n- = 0 (b: -a~) In (bla)'

Note that eqn (19) is identical with the concentric result given in eqn (7). When higher
order expansions in '1 are employed this is no longer the case and the field eq uations for
f(::) and fJ(::) are fully coupled. The uncoupling in eqn (19) occurs because the lowest order
correction to IIf is 0 (r/ \

For an extended medium and a semi-infinitely long broken fiber. 0 :::; :: <XJ. we have
f(::) = A e kt: <II and the boundary condition at :: = 0

which. together with expression (15) gives A = (ao/ E, Hulk) whereby

a 0 u
f(::) = . e

L, k
(21 )

as in eqn (H).

Since the disturbance introduced by fiber breakage involves no applied rnomcnt at
:: = 0, we have

fa e" a{(r. O. O)r~ cos 0 dr dO = 0
Jo Jo

whereby, in view of eqn (15), we obtain the boundary condition

(f'(0) = O. (22)

Substituting (21) into (20). together with the condition (22) and the requirement that
lim {I(::) = 0 we obtain after several manipulations:
: ... c

(23)

For n:alistic values of L'r (0.4 < 1'/ < 0.7) k and I arc of similar magnitude.
With 1\::) and (/(::) thus determined. eqns (10), (14)-(16). provide the "complete"

solution to the perturbed field caused by the break of the inner fiber. The totallield is given
by adding a[ = a" to expression (15).

We arc now in a position to assess the overload caused in the nearest neighboring tiber.
centered at r = Iz. () = O.

In contrast with the concentric case. when the overload caused by a fiber break is
shared equally by all six neighboring fibers. we assume that in the eccentric case the burden
is distributed proportionately to the six unequal angles subtended by the arcs which span
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Fig. 5. Geometric considerations for evaluating the overload carried by the nearest neighboring
fiber F due to the fracture of the fiber I The load shed upon F is related to the angle % (see teJlt).

the eccentric boundary relative to O. Specifically, the angle ex subtended by the nearest
neighboring tiber Fi~ shown in Fig. 5. A straightforward calculation gives cx = rrjI2+cx',
where tan ex' = dj(J3a) = (1z/2-a)/(J3a). Assuming that the overload N(:) on fiber Fis
due to the shear stress <';;(h,:, 0), - 'CX ~ (J ~ 'CX, we have

N(=) = f: f' <';;(h, 0, :)h dO d=.
£. •

(24)

Substitution of eqns (16), (21) and (23) into expression (24) yields, after several
manipulations

(25)

In (25) c" = 2(a"+b1)ln (b/a)-(6 1-a").
In addition to the normal overload, the shear stresses which act at the interface between

the matrix and the nearest neighboring fiber introduce bending into that fiber. To assess
the bending effect assume that these shear stresses arc distributed uniformly over the arc PP'
shown in Fig. 5. This would place the line of action of N(:) at the center of gravity of the
arc PP', hence with a lever arm p = 3.j3aj2rr about the center of the nearest neighboring
fiber.

Combining the normal and bending effects we have an overstress on the nearest
neighbor

N(=) ( p) N(=) ( 6J3)
O'm~\(=) =-T I ±4 - = -"- I ± _.- .

min rra a rra rr
(26)

Consider the corresponding non-dimensional quantity .s\:)m~\ = O'm~\(::)/O'o then,
mIn min

employing superposition in analogy with eqn (9), the total non-dimensional stress in the
fiber F is given by S(=) = 5(::)+ I with S(=)m., occurring at point Pc and S(:)mln at PA

(Fig. 5).
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RESlLTS·\'.;D CO'.;CLLDI:"G REM.-\Rl-:.S

The non-dimensional ~trcs~es S(:)m... borne by the fiber which is nearest to the broken

filament are shown in Figs 6 and 7 vs the non-dimensional distance :. (J from the place of
the fiber break. for E-glass epoxy and graphite epoxy. respectively. For E-glassepo\y we
took ~"r = 0.50. £, = 10.5 x 10" psi and Cm = 0.2 x 10' psi. while for graphite epoxy we
employed V, = 0.65. £, = 4) x 10" psi and Cm = 0.2 x 10" psi.
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Note that a maximal stress increase of about 100% occurs in both glass epoxy and
graphite epoxy. This contrasts with rises of about 1(}-15% evaluated by Hedgepeth (1961).
Furthermore. the effect of a fiber break is confined to a smaller distance in glass epoxy than
in graphite epoxy since the higher modulus of the graphite fibers introduces a stronger
stress channelling effect due to the magnified anisotropy of the composite.

An account of the effects of overload on fibers near the broken filament was incor­
porated by Zweben and Rosen (1970). where all overloads were considered to be purely
tensile and all fiber arrays were assumed to be periodic. They noted that fibers adjacent to
the broken one would fail at the stress 17. K. where (JI is the nominal failure stress and K
denotes the overload factor. Since fibers within composites are known to break even under
low load levels the consideration of overlQad effects appears to be realistic. This argument
applies in the present work as well. with the additional proposition that stresses due to fiber
bending should be incorporated in the statistical analysis. Furthermore. it should be noted
that due to the randomness of fiber spacing within the transverse cross-section the factor
K should be viewed as a random variable and the statistical analysis should be reformulated
to account for this fact. Finally. as indicated in the paragraph following eqn (9). normal
stresses exist in the matrix (and fibers) in the transverse direction in the vicinity of a fiber
break. A method to determine these stresses was developed. within the context of shear lag
models. by Goree and co-workers [see e.g .. Dharani et al. (1983)]. Obviously. such stresses
would cause bending in neighboring fibers even in perfect arrays.

In view of the above considerations. it is clear that failure mechanisms quite distinct
from tensile fracture can occur in fibers adjacent to a broken filament. Since it is reasonable
to assume that imperfections of several kinds (such as weak. kinked. misaligned and broken
fibers. dehonds along fiher/matrix interfaces. voids and cracks within the matrix. etc.) are
commonplace within fihrous composites. it is to he expected that the complex state of
stress presented in this work should be routinely encountered in the vicinities of those
imperfections. Consequently. the failure of filamentary composites may well be attributed
to eomplex. mixed-mode mechanisms which are inherently dilkrent from those represented
by the strength statistics of "dry" fiher hundles. which is associatl.:d with purely tensile
responsl.:.
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APPESDIX: THE PERTURBATIOS EXPASSION

Consider two eccentric circles of radii a and h, res~tlvely and with e\.'Ccntricity e as shown in Fig. 4.
As imhcated in eqns (~) and (5). the solution to the concentnc shear-lag problem is given by

u' '" u;(;) '" 1(;)

In (h r)
u. = u.(r.;) '" I--i.--·· ((;)
'. n I" al"

where according to eqn 8

(AI)

, 2Gm
k- =--'---

E,ln (h,a)'
(AJ)

In the eccentric case. considerations of static equilibrium for the tiber lead to the incorporation of a bending
component in its deformation. Upon assuming that undeformed cross-st."Ctional planes of the tiber remain plane
after defonnation, we choose in accordance with eqn (10):

u; '" 1I;(r,O.;) II;) + "fI(;)r cos 0

where" = (·/h. In the sequel. " serves as our perturbation parameter. t
In addition. by eqns (10) (12), equilibrium of the matrix region yields

In (hir) [ ~ ( 8.,) J'~--l(;)+ t... Amr"'+ - cosmO PI;).
In (h(a) "'_I r'"

(A4)

(AS)

It IS now nccessary to satisfy the conditions that 1(" II.' at r = a ,llld that 117 = 0 on the boundary of the ('e('('rlffle

circle of radius r = ".
Acwrding to the perturhation scheme of Parnes and Rdtzer (191<6) the value of a function n"O) on the

boundary c" of iIIl eccentric circle of radius" with eccentricity" = (.!I> can be expressed hy a perturhation
expansion in '1 as f"llows

fiC" ~ r'" + [!,11' + "fll','" 111 + [F'" + ,,11>'," + ,,11>'t'11T' + If' I, + ,,(!l'," + ,,'!l'," +,,<1>\'''1,,' +

where. In the present ease

1>' [ h J(!l'" = cos (I SI"ll' II F''' - cos' II f'-'"() I 2 ., rr J m .

(A6)

(A7)

In the present prohlem the function f"" is given in eqn (A4). and the houndary condition at u7jC" = 0 is
satisfied by the employment of expn:ssions (A6) and (A 7). On the other hand the continuity condition 117 = u; ;It
r '" a does rlof involve the perturbation seheme since. by hypothesis. r = a is a "concentric houndary". Obviously.
the presence of two functions of :, /(:) and /1(:). in eqn (A4) will necessitate two series expansions in (AS) (to
assure t(' = u; at r = a). Denote the two series expansions hy

Lt (A",,,. + ~;;) <:os mil] Ie;) and Lt(A.,,m + ~.;) cos mil] IJ(;), respt.'Ctively·t (AH)

Then. a systematic application of the conditions U;'jc" = 0 and u7(ll. 0.:) U/(ll. 0.;) yields

{
In (hlr) ( B') .[ " (. B') ],('(r, 0,;) = --- +'1 A,r+ -. coslJ+'I' C, In (rjll) + .1,'-+ -.: cos ~IJ
In (hjll) r - r-

'[( D,) (' B,) ]} . { lI' h'-r:+'T C,r+ -; cosll+ .-I,r+;T cosJIJ /(;)+ "P-_ll~'-r-coslJ

where, upon denoting

t At first glance it may appear that the representation (1\4) is somewhat arbitrary. However. it can be shown
that if one starts wilh u;(:) = I(;) + p(;)reos () then a systematic expansion in " indeed yields PC;) = "P(;). We
chose (A4) as our starting expression to circumvent non-essential details.

t It is of course always permissible to include the "concentric" solution A + Bin r within the perturhation
expansion whenever necessary.



we have

Eccentric shear-lag model

1 a2

AO=ln(b;<l)' A=b2 _a 2 '
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b'A
..1,=---

. b'-a"

and

hii
An = ---­

log (hi<1) ,

~ 1>2 [ 1 h'+<1'J ­
(, = - h~ 1+ I-(h-I + h'------' A,-<1 og;a -(/

a'h' h'+II'
9, = h'--' h"------' A,-(/ -<1

The cljllilihrilll1l of f('rce and moment on the liher. as given in Cljuations (\7) and (I R), yield two coupled
ordinary dilli:rential cljuations for I(:) and 11(:). It turns out that 1l:) and #(:) now take the followmg forms:

with

- ({1" II • ') iI'" ' ,j" ,II:) = f:, k +(/:'1'+u", e' .", +(v:'1'+v,'1 )e' ,.

11(:) = ({I, 'I + II :,,: + II ,'I ')e "';'" + (/,,'1 +,':'1: + i' ,'1 ') e I,;., (AIO)

As noted earlier, we refrain from employing the higher order results of this Appendix in our computations,
l'x:callse thc approxil1l;ltions involved in our modd do nol warrant thcir usc, In fact, the utilization of higher
exp.msions lIIay .:onvey the falla.:i"us impression of higher accuracy.


